Equivalences du pivot par ligne - surjectivité

Soit $A \in M_{m \times n}$ et l'application linéaire $T : \mathbb{R}^n \to \mathbb{R}^m$ telle que $T(\vec{x}) = A\vec{x}$. Les affirmations suivantes sont équivalentes :

- A admet un pivot par ligne (donc m pivots);
- A est de rang m;
- $\forall \vec{b} \in \mathbb{R}^m$, le système $A\vec{x} = \vec{b}$ est compatible ;
- $Im(T) = Im(A) = Span(colonnes de A) = \mathbb{R}^m$
- T est surjective

Equivalences du pivot par colonne - injectivité

Soit $A \in M_{m \times n}$ et l'application linéaire $T : \mathbb{R}^n \to \mathbb{R}^m$ telle que $T(\vec{x}) = A\vec{x}$. Les affirmations suivantes sont équivalentes :

- A admet un pivot par colonne (donc n pivots);
- A est de rang n;
- ullet le système $Aec x=0_{\mathbb{R}^m}$ admet la solution unique $ec x=0_{\mathbb{R}^n}$;
- les colonnes de A sont linéairement indépendantes ;
- $\bullet \ \mathsf{Ker}(T) = \mathsf{Ker}(A) = \{0_{\mathbb{R}^n}\}$
- T est injective.

Equivalences à l'inversibilité - bijectivité

Soit $A \in M_{n \times n}$ et l'application linéaire $T : \mathbb{R}^n \to \mathbb{R}^n$ telle que $T(\vec{x}) = A\vec{x}$. Les affirmations suivantes sont équivalentes :

- T est bijective;
 T est injective;
 A admet n pivots;
- T est surjective; A est inversible; $det(A) \neq 0$;
- $A\vec{x} = 0_{\mathbb{R}^n} \implies \vec{x} = 0_{\mathbb{R}^n};$ $\operatorname{Im}(T) = \operatorname{Im}(A) = \mathbb{R}^n;$
- A est de rang n. $\operatorname{\mathsf{Ker}}(T) = \operatorname{\mathsf{Ker}}(A) = \{0_{\mathbb{R}^n}\}.$
- pour tout $\vec{b} \in \mathbb{R}^n$, le système $A\vec{x} = \vec{b}$ admet une unique solution $(\vec{x} = A^{-1}\vec{b})$;
- les colonnes de A forment une base de \mathbb{R}^n ;
- A est un produit de matrices élémentaires ;
- La forme échelonnée réduite de A est I_n ;